
  

 

Abstract—The minimum variance principle is, generally, 

used for controller’s synthesis. In this paper, we propose 

another use of this principle to identify the hysteresis property 

of piezoelectric actuators using the Extended Least Squares 

identification technique adapted for the ARMAX model. 

 
IndexTerms—Piezoelectric actuator, nonlinearity, hysteresis, 

identification. 

 

I. INTRODUCTION 

The piezoelectric actuators (PEA) based on the inverse 

piezoelectric effect are used in many fields due to their 

properties. Indeed, for example they are very used in the 

ultra-precision applications [1]-[3]. However, the hysteresis 

property, existing in piezoelectric materials, makes the 

modeling and the control of PEA difficult. Many nonlinear 

models was developed in the literature to describe the 

hysteresis property of piezoelectric actuators such as the 

Preisach model and its modifications [4]-[8], the Duhem 

model [9], [10], the Maxwell Resistance Capacitor (MRC) 

model [11], the Bouc-Wen model [12]-[15], the Prandtl- 

Ishlinskii model [16]-[20] and the modified Rayleigh model 

[21]. A survey on these models can be found in [22]. 

Furthermore, the experimentation showed that the 

hysteresisnon-linearity in PEA is not symmetric and many 

models was proposed in [23]-[25] to describe the asymmetric 

hysteresis existing in PEA. To compensate the hysteresis 

behavior of PEA, many intelligent techniques was used such 

as fuzzy logic [26], [27], neural networks [28], [29], adaptive 

filter [30], [31], hybrid models [32], NARMAX models [33], 

[34] and iterative learning control [35]. The most previous 

models are nonlinear and difficult to implement in on-line 

which makes the controller synthesis and analysis difficult. 

To deal with this problem, the PEA can be described by linear 

models using identification algorithms [36], [37]. In this 

paper, we propose a technique for the description of the 

hysteresis property. This technique is based on the 

modification of the minimum variance controller algorithm 

to be used for identification purpose. This paper is organized 

as follows: the extended least squares recursive identification 

method is described in Section II, then, the proposed 

minimum variance identification scheme is presented in 

Section III and before concluding, the proposed approach is 

validated through simulation results. 
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II. THE EXTENDED LEAST SQUARES (ELS) IDENTIFICATION 

METHODS 

The piezoelectric actuator can be described by the 

ARMAX model of the following expression: 
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And y(t), u(t) are respectively the output and the input 

signals, e(t) is a white noise with zero mean value and 

constant variance and d is pure time delay. 

Hence, model (1) can be written as: 
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If we assume that the estimate of   is , the estimated 

output y is given by: 
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The prediction error between the real and the estimated 

output ( )ε t  is defined by: 
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We define also the criterion J(t): 
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Minimizing this criterion means: 
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From (6), the estimated parameters vector �Ö�T is obtained 

as follows: 
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From (9): 

 
1

1

1

( ) ( 1) ( 1)
t

T

i

F t �3 �L �3 �L
��

��

� 

� �� ���¦
1

( 1) ( 1) ( ) ( )
t

T T

i

�3 �L �3 �L �3 �W �3 �W
� 

� �� �� ���¦  

1( ) ( ) ( )TF t �3 �W �3 �W���  � � 

 

Thus, the adaptation gain F(t + 1) is given by: 
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From (8): 
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For i = 1,...., t + 1, we have: 
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From (11) and (12) we have: 
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And 

( )� � � W: Estimated parameters vector 

F(t) : Adaptation gain 

( )ε t : Prediction error 

( )� 3 � W: Observations vector 

Equations (13) and (14) are called parametric adaptation 

algorithm (PAA) which is used for all recursive identification 

techniques. To validate the identified model, the estimations 

of the normalized autocorrelations RN(i) are calculated as 

follows: 
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The identified model is valid if |RN(i)|<0.15 [38]. 

 

III. DESCRIPTION OF THE MINIMUM VARIANCE 

IDENTIFICATION SCHEME 

In this paper we modified the minimum variance controller 

scheme to be used for identification as shown in Fig. 1. 

Indeed, instead of using as input a reference signal, we use 

the estimated output. In the diagram of Fig. 1 to be used for 

identification purpose, y(t) is the system output, u(t) is the 

control signal and ( 1 )y t d� � � �  is the predicted output. R and 

S are the regulator polynomials and are given by [39], [40]: 
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Fig. 1. Proposed minimum variance identification scheme. 

 

From the diagram we have: 
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For the case d = 0, we have 
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Then, the PAA of the equations (13) and (14) can be 

applied with 
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IV. SIMULATION RESULTS 

In this section, we use the algorithms of equations (13) and 

(14) with the parameters and observations vectors of the 

proposed approach to identify the hysteresis property of the 

piezoelectric actuator. 

In order to validate the proposed approach, we use the 

Matlab environment to implement the different algorithms. 

The data file (I/O file) used for the identification corresponds 

to the piezoelectric actuator APA-120ML excited by a 

sinusoidal signal of frequency 50Hz:  

 

u(t)= 68.5sin(2_×50t+0.44) + 61.5(v). 

 

The piezoelectric actuators are generally modeled by a 

second order system, therefore the polynomials orders of the 

model are selected as follows: nA =2, nB=2, nC =1 and d=0. 

which corresponds to nR =1, nS=1 and nC =1. 

The identification results and the convergence of the 

regulator parameters are shown in Fig. 2a, Fig. 2b, and Fig. 

2c. According to Fig. 2a, we can remark that the proposed 

approach can ensure satisfactory results with an identified 

behavior of PEA close to the original one. 

To evaluate proposed approach performances, the 

identification relative error and the values of its 

autocorrelation function are given in Fig. 3a and Fig. 3b, 

respectively. These figures shows that the maximum relative 

error of identification is 5%, also |RN(i)| are all small than 

0.15. Therefore, the prediction error tends towards a white 

noise which validates and draws clearly the performance of 

the proposed approach. 

 

 
(a) Outputs comparison. 

 
(b) Input-Output feature. 

 

 
(c) Variation of the regulator parameters. 

Fig. 2. Identification results. 

 

 
(a) Identification error. 

 

 
(b) Error autocorrelation. 

Fig. 3. Validation of the technique. 
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V. CONCLUSION 

In this paper, an identification scheme was proposed based 

on the minimum variance principle to identify the hysteresis 

property existing in PEA. An on-line model is constructed 

based on the ARMAX model and the extended least squares 

algorithm is used to represent this phenomenon. 

Simulation results validated and showed the performance 

of the proposed approach. Furthermore, they showed also 

that the ARMAX model can characterize well the hysteresis 

non linearity in piezoelectric actuators which facilitates the 

analysis and the control of these devices.  
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