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Abstract—The aims of this study are to improve the model 

perforemance with input selection and comparision fast 

learning and automated learning algorithms. Therefore, the 

methodology was, first, investigation cross correlation, stepwise 

regression, cross correlation with stepwise regression, genetic 

algorithm, supervise and all input) then comparing the learning 

algorithms: Levenberg Marquardt-LM and Baysian 

Regularization-BR). The ANN was used to forecast the water 

level at a gauge station M.7. The results showed the selecting 

input from genetic algorithm gives the best result for 

forecasting the flood peak and BR provided better results than 

LM particulaly at the flood peak. 

 
Index Terms—Neural network, flood forecasting, 

Levenberg-Marquardt, Bayesian Regularization, Mun Basin. 

 

I. INTRODUCTION 

Flooding is a serious problem almost every year in some 

areas of Thailand. In 2011, the tropical storm NOCK-TEN 

passed Thailand, bringing with it torrential rains, in which 

over 30 provinces were flooded, including Chiang Mai and 

Ubon Ratchathani. For effective flood prevention, an early 

warning system is necessary. Hydrological model such as 

MIKE 11 [1], TANK [2] and Artificial Neural Network 

(ANN) [2], [3], have been developed and applied for flood 

forecasting. Notably, the ANN model, which is a black box 

model, makes use of a data driven method. The advantages of 

the ANN model are that it does not require physical data or 

field data, and has less computation time than the other 

approach models. It is also easy to update when new data 

become available. Therefore, the Hydrology Division, Royal 

Irrigation Department, Thailand, has chosen to apply the 

ANN model for flood forecasting for over 11 basins in 

Thailand [4]. For improving the ANN model for its better and 

more effective use in for flood forecasting, there are several 

methods, for example, selecting the input variable from the 

input determination techniques [5], [6], adding extra input 

variables [6], [7], and selecting different transfer functions 

[8], selecting different learning algorithms [9]. However, it 

has to be borne in mind that different basins may require 

different ANN models because of different runoff behaviors 

in the basin and different data available. In addition, it is 
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obvious that the performance of the ANN model depends on 

learning algorithms, input variables and number of hidden 

nodes [10]. Learning algorithms in the Matlab software for 

example, Scaled Conjugate Gradient (SCG), 

Levenberg-Marquardt (LM) and Bayesian Regularization 

(BR) have different approaches, SCG is good for pattern 

recognition, LM is the fastest algorithm and BR is an 

automate regularization for improving generalization [11]. 

Chaipimonplin [10] reviewed many input determination 

techniques that have been used for selecting the input 

variable in the ANN model for example, cross correlation, 

stepwise regression, genetic algorithm, PMI, etc. He also 

found that the suitable techniques for forecasting water level 

in the Ping Basin, Thailand, included cross correlation, 

stepwise regression, cross correlation plus stepwise 

regression and genetic algorithm. Thus, this study was 

conducted to determine the efficiency of the two learning 

algorithms; LM and BR, for forecasting the water level at the 

specified case study, Mun Basin, Thailand. The inputs for the 

modeling were obtained by using four input determination 

techniques, as well as supervision selection, and by using all 

the input variables. The trial and error of the number of 

hidden nodes was also take into account. 

 

II. STUDY AREA 

Mun Basin is the largest river basin in Thailand, covering 

an area of approximately 71,000 square kilometers or 14% of 

the country’s land area (Fig. 1a). Inundation problem, which 

occurs frequently in the Mun Basin area, often takes place in 

the area along the riverside of the Mun River in the lower part 

of the basin, especially in the Ubon Ratchathani province. 

The major causes of flood related problems in the Mun Basin 

include (1) inadequate water storage capacity, preventing 

water flow from retarding from the upper part of the basin, (2) 

limited drainage capability due to natural obstacles in the 

lower section of the Mun River, and (3) expansion of settlers 

into flood threatened areas. The Ubon Ratchathani province 

is 630 kilometers east of Bangkok. In the past 50 years, 23 

flood events have been recorded for the area. The highest 

level of river runoff is recorded usually between September 

and October. The flood problem takes place in the 

community areas along the river banks in the city area of 

Ubon Ratchathani because these areas are located in the 

lower part of the interception point of the Mun River, adding 

to the woes is the high rainfall intensity of the area. It is a 

well-known and accepted fact that the stream water level of 

+112 meters above mean sea level, measured at the M.7 in 

Ubon Ratchathani, is the cause for the onset of the flood 
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problems in the area. The highest water level of +117.7 

meters above mean sea level (12.76 meters) was recorded in 

the year 1978, and this flooding caused extensive damage to 

the communities, environment, and economy. It was stated in 

the water-resources management plan for the Mun Basin [12] 

that trying to solve the flood problems in the Mun Basin by 

resorting to constructional measures was uneconomical, and 

that the promulgation of non-constructional measures such as 

flood forecast and warning systems, land utilization control, 

and evacuation of flood threatened areas are what must be 

implemented.

 

 
 

(a)

 
(b) 

Fig. 1. Mun basin (edited from [12]) 

 

III. METHODOLOGY 

Inputs for the model were the recorded water levels at the 

gauge stations in the study area. Four upper stations (M.181, 

M.179, M.176 and M.182) were used to forecast the water 

level at the M.7 gauge station (Fig. 1b). The M.181 and 

M.182 are the upstream gauge stations of M.7 in the main 

river, while the M.176 and M.179 are the gauge stations in 

the tributary of the main river. The longest distance of 76 

kilometers is from M.176 to M.7, followed by 72 kilometers, 

which is from M.182 to M.7. The available data in the study 

were hourly water levels. The available data from the five 

stations covered the five year period from 2007 to 2011, in 

which four flood events had occurred including the most 

devastating flood in 2011 (Fig. 2). At the M.7, the water level 

of 7 meters denotes the onset of flood in the study area. In 

order to explore the efficiency of the learning algorithms, the 

experiment was divided into five for the different input 

variables. The model performances, between LM and BR, 

were compared. 

 

 

Fig. 2. Hydrographs at the M.7 station of floods between 2007- 2011 

A. Input Determination Techniques 

For this study, four different approaches of the input 

determination technique (cross correlation-AC, stepwise 

regression-AS, cross correlation and stepwise regression-ACS, 

genetic algorithm-AG), supervise selection-ASp and all the 

input variables-AA were explored to indicate the difference in 

the input variable selection. Stepwise regression, which is the 

multiple regression method, removes the less correlation 

variable AC, and is the method used to calculate the 

relationship between the input variables, for this study only 

those input variables with correlation greater than 0.9 were 

selected. AS is the multiple regression method, by which the 

less correlation variables were removed and the input 

variables that remained after the removal were selected. ACS 

selected the input variables from those variables with 

correlation greater than 0.9, AG is based on biological 

evolution and natural selection and was developed by 

Holland [13] and ASp selected only the input variable time t 

of each station. The cross correlation and stepwise regression 

were calculated from the SPSS software and The WEKA 
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software was used to calculate the genetic algorithm. 

Three input variables were used for each station, which is 

the variable time t, time step back of 12 hours (t-12) and 24 

hours (t-24). The total number of input variables was 15. 

Table I presents the selected input variables for each 

technique. AC, AS and ASC, which did not selected variables 

from the M.176 showed similar input variables, also the cross 

correlation and the stepwise regression provided the same 

input variables (12 inputs).

TABLE I: INPUT VARIABLES

Input
Input Determination Techniques

AC AS ACS AG ASp AA

M.7 X X X X X X

M.7_12 X X X X X

M.7_24 X X X X X

M.181 X X X X X X

M.181_12 X X X X

M.181_24 X X X X

M.179 X X X X X X

M.179_12 X X X X X

M.179_24 X X X X

M.176 X X

M.176_12 X

M.176_24 X X

M.182 X X X X X X

M.182_12 X X X X X

M.182_24 X X X X

Total 12 12 10 11 5 15

B. Artificial Neural Network Model

Models were developed to compare the two learning 

algorithms; LM and BR. The number of hidden nodes for the 

model depended on the number of input nodes, which varied 

according to the five techniques of input determination. The 

hidden nodes were set from 1 to 2n+1[10] (n was the number

of input variables), therefore, the numbers of the hidden node 

of the AC, AS, ACS, AG, Asp and AA models ranged from 

1-25, 1-21, 1-23, 1-11 and 1-31, respectively. The result of 

this study was the water level at the M7 at the 24 hours in 

advance. For the available dataset, the data in the period 2007 

– 2009 was used for the model learning, and the data in the 

year 2011 was used for the model testing. The final results 

were obtained from the average of the 50 loop calculations.

To assess the model performances, Peak Difference PDIFF 

(1), Root Mean Square Error-RMSE and Coefficient of 

Efficiency (Nash-Sutcliffe efficiency)-CE were applied [14]. 

PDIFF= max Q
'
i - max (Qi) (1)

where Q
'
i is the modeled value at time i, and Qi is the 

observed value at time i. If the result of PDIFF is positive 

value, it means the model forecasting is over the actual peak, 

while, negative value means the model forecasting is under 

the actual peak.

IV. RESULTS AND DISCUSSION

The study results are presented separately corresponding to 

the input determination techniques as followed. 

A. Cross Correlation (AC) and Stepwise Regression (AS)

Both the techniques; cross correlation and stepwise 

regression, selected all the input variables from all stations 

except the station M.176. It may be because of this station’s 

distance to M.7, which is the longest distance, also it is not 

located at the main river. The hydrograph (Fig. 3a) shows that 

the forecast results of water levels agree well with the 

observed data. The LM and BR models show very similar 

performances. Nonetheless, the BR model (red line) seems to 

be better than the LM model as with increasing hidden node, 

it decreases the accuracy of peak forecasting (Fig. 3b), the CE

values slightly decrease and the errors of RMSE rise up when 

the number of hidden nodes increases (Fig. 3c, 3d). 

Fig. 3. Results of the models with the inputs from AC and AS

Therefore, the best hidden node is the hidden node which 

is indicated as 12:1:1. The performances of the LM and BR 

models are similar but that the BR model (in which the 0.037 

meters error (PDIFF) and the CE value of 0.999 were 

obtained) gives a better peak water level forecasting than the 

LM model. All the same the RMSE values of the LM and BR 

models seem to be similar as there exists a difference of only 

0.003.

B. Cross Correlation and Stepwise Regression (ACS)

The combination techniques (cross correlation and 

stepwise regression) required only two input variables less 

than the cross correlation. The RMSE between the two 

learning algorithms has a difference of 0.02 and the CE 

values of the LM and BR are 0.990 and 0.999 respectively. 

However, the BR model still provides a better result at the 

peak water level than the LM model (0.048/0.061). In 

addition, both the models hydrographs present good results 

(Fig. 4a). The effect of the number of hidden nodes are still 

similar with AC as BR is better than LM with more numbers 

of hidden node result in the poorer model performances (Fig.

4b, 4c, 4d).
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Fig. 4. Results of the models with the inputs from ACS 

 

C. Genetic Algorithm (AG) 

The model with the input selected from the genetic 

algorithm technique seems to provide the best performance 

for forecasting the water level at the peak. The modeling 

results with the BR and LM have errors of only 0.001 and 

0.007 meters, which is the best score for each of the learning 

algorithms. On the other hand, the RMSE (0.073/0.075) and 

CE (0.998/0.998) values of AG_LM and AG_BR are the 

worst when compared with the other three input 

determination techniques. The reason might be, first, the AG 

chooses M.176_24, which has less correlation but may have a 

great effect on the peak water level of the M.7 gauge station, 

and second, it ignores the M.181_24 whereas the other three 

techniques do not ignore it (TableI) as the M.181 gauge 

station is located at the main river, and so the accuracy of 

forecasting the water level at M.7 may depend on it (Fig. 1b). 

Again, it can be seen that the performances of both the 

models are similar (Fig. 5a) and that the LM and BR models 

provide less accuracy at greater numbers of hidden nodes 

(Fig. 5b, 5c, 5d).  

 

 

Fig. 5. Results of the models with the inputs from AG 
 

D. Supervise Selection (ASp) 
 

The idea of ASp is to reduce the number of input variables 

as much as possible, hence this technique tried to select only 

the data at time t of the five stations, Unfortunately, the 

forecasting results of both the LM and BR models were the 

poorest, in which the values of PDIFF, RMSE and CE were 

0.172 meters lower than the peak, 0.192 and 0.987, 

respectively. This is because only five input variables were 

selected and that may not be enough information for ANN to 

learn and forecast. This indicated the influence of the number 

of inputs on the model performance, that is a fewer number of 

input variables leads to a reduction in the model’s 

investigative capability. Fig. 6a presents the hydrographs of 

ASp both LM and BR algorithms underestimate with 

observation hydrograph. Performances of the models with 

the different numbers of hidden nodes drop dramatically at 

greater numbers of hidden nodes (Fig. 6b, 6c, 6d). 

 

 

 

Fig. 6. Results of the models with the inputs from ASpAll Inputs (AA) 

 

All the inputs consisted of 31 hidden nodes, which was the 

maximum number considered for this study. The 

hydrographs in Fig. 7a present the mode performance 

training with the LM and BR algorithms using all 15 input 

variables, it seems to be good results but when looks at the 

graphs at PDIFF, CE and RMSE (Fig. 7b, 7c, 7d), there are 

large errors occurring when the number of hidden nodes 

increases. Moreover, better results are obtained when training 

with the BR algorithm. The practice of using all the input 

variables gives better results at the peak than the other input 

determination techniques except the genetic algorithms as 

AA includes an input variable at M.176_24. However, too 

many input variables, of which some are unsuitable reduce 

the overall model performance as the CE of LM/BR and the 

RMSE of LM/BR are 0.998/0.998, 0.080/0.082 respectively, 

also because of the large size of the data set the model needs 

more time particularly for the learning process. 

 

 

 

Fig. 7. Results of the models with the inputs from AA 
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V. CONCLUSION AND RECOMMENDATION 

To sum up, model training with the LM and BR shows 

similar performances in forecasting the water level at M.7 

station but for the peak water levels, it is obvious that 

forecasting with the BR algorithm provided better results 

than with the LM. However, the major disadvantage of the 

BR learning algorithm is that it takes a long time to finish the 

learning process, particularly with larger numbers of hidden 

nodes. Additionally, the ANN models forecast water levels at 

the M.7 24 hours in advance from selected input variables 

from six techniques. The overall results are quite similar but 

AG seems to be the best technique for selecting the input 

variable for peak forecasting. In contrast, it is obvious that the 

insufficient input variable (ASp) could lead to the worst 

forecasting performance. These techniques also show that 

M.7, M.181 and M.169 are important input variables for 

flood forecasting at the M.7. As for finding the best number 

of hidden nodes for this study area, it can be pointed out that 

only one hidden node is the perfect number so it seems easy 

or not complex for forecasting the water levels 24 hours a 

head at M.7. Therefore, the recommendation for future study 

is to extend the forecast period to more than 24 hours or to 

use testing models with different input determination 

techniques for small flood events.  
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