Autonomous Air Conditioning System

Syed Fazil Bin Farukh and M. Saleem Khan

Abstract—This paper presents an autonomous air conditioning control system using fuzzy time control discrete event model. The system is designed with two inputs: Temperature, humidity and two outputs: fan speed and fan spinning time. Temperature and humidity are controlled by controlling the three valves i.e. cooling valve, heating valve and humidifying valve. System takes feedback from sensors. Fuzzy time control rules are formed and simulated using the MATLAB tool box. The results obtained from the MATLAB simulation are found to be correct according to the design modeling. The work is based on fuzzy time control discrete event model and implementation of design algorithm. This research work will enhances the capability of the existing fuzzy logic control system and discusses the time control issues of digital dynamical control systems.

Index Terms—Fuzzy time control discrete event system, MATLAB simulation, air conditioning system.

I. INTRODUCTION

Control system has got vital industrial applications in recent times. There are numerous applications of automation controls in nature and industry e.g. inside our body food digestive system, blood circulatory system, air plain autopilot, modern transportation, communication and in manufacturing industry. Automation provides better performance, reduces the manufacturing cost and provides mass production.

Fuzzy time control discrete event model is much better than fuzzy logic control (FLC) and conventional control system due to its simplicity in calculation and better performance. Fuzzy logic control is based on heuristic knowledge and deals with non probabilistic uncertainty issues [1]. Numerous system are designed using the fuzzy logic control which take numeric input and give numeric output but the controllers work on words. Although these systems are good enough in their design and performance but they do not take time into account. Time independency is their draw back. The proposed air conditioning model is designed using the fuzzy time control discrete event model [2], for which the output states are bounded with time and used to operate the plant ON or OFF for certain time period [3]-[6]. This research work provides a better design of autonomous air conditioner, due to its time dependency large amount of energy will also be conserved. The designed model itself provides a new way to design other systems based on fuzzy time control discrete event model.

II. FUZZY TIME CONTROL DIScrete EVENT SYSTEM

Fuzzy time control discrete event system is the combination of the fuzzy time control system and the discrete event system as shown in the figure-1 below.

![Fig. 1. Block diagram of fuzzy time control discrete event system](image)

III. FUZZY TIME CONTROL SYSTEM

Fuzzy logic time control system generates the output variable and output time signal. Fuzzy logic time control system sub divided into two parts; one is Generator (G), (which produce the numeric outputs) second is time control (TC), (TC produce the numeric value of time for output) [7].

IV. DISCRETE EVENT SYSTEM

In the designed modeling the Discrete event system is further subdivided in to three parts;

1) Event control
2) Process control
3) System control

1) Event control: takes input from fuzzy logic time control to generate and manage event.

2) Process control: takes inputs from system control and event control to assign a process for that event for a specific interval of time.

3) System control: controls the whole system for a specific interval of time.

After defuzzification Binary control signals and time control signals from fuzzy logic time control system are given to discrete event system which allow to pass these binary control signals to operate the plant ON or OFF for specific time period.

This air conditioning system contains two fuzzifiers, inference engine. Knowledge base along with data base, rule base and output membership functions (MF) [8], knowledge base is attached with the inference engine, two defuzzifiers and discrete event system.

Numeric inputs are given to the Fuzzifiers which converts...
these numeric inputs to the linguistic variables these linguistic variables are given to inference block where the max-min composition is applied to get four values of R. Knowledge base receives the crisp values of input variables and give four singleton values according to the rules which are designed for system. These singleton values and values of R are provided to the defuzzifiers, here two defuzzifiers are used, one for output variable fan speed and other for output time control, fan spinning time [2].

After defuzzification two numeric (crisp) values of outputs are obtained one for output variable; fan speed and other for fan spinning time. Analog to digital converter(ADC) is used to convert the crisp value of fan speed into binary code and crisp value of fan spinning time are provided to the pulse strobe unit, which allow to pass binary code for a certain time. Then these binary codes are used to make active discrete event system under time constrain [9].

The plot of input membership function of temperature are shown in Fig. 1 there are five membership functions i.e. F_1, F_2, F_3, F_4, F_5 and four regions

![Fig. 3. Membership function plot for temperature](image)

The plot of input membership functions for humidity are shown in Fig. 2 there are five membership functions i.e. F_1, F_2, F_3, F_4, F_5 there are four regions.

![Fig. 4. Membership function plot for humidity](image)

Two outputs their membership functions are listed in Table III.

<table>
<thead>
<tr>
<th>Membership Functions</th>
<th>Ranges</th>
<th>Fan speed</th>
<th>Fan spinning Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF1</td>
<td>0-25</td>
<td>Stop</td>
<td>None</td>
</tr>
<tr>
<td>MF2</td>
<td>0-50</td>
<td>Slow</td>
<td>Small</td>
</tr>
<tr>
<td>MF3</td>
<td>25-75</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>MF4</td>
<td>50-100</td>
<td>Fast</td>
<td>Long</td>
</tr>
<tr>
<td>MF5</td>
<td>75-100</td>
<td>Vary</td>
<td>Very Long</td>
</tr>
</tbody>
</table>

For the convenience in calculation the range values of output membership function for fan speed and fan spinning time are taken same

Plot of output membership function for fan speed and fan spinning time contains five MF, sand four regions

![Fig. 5. Membership function plot for output variable](image)

To verify the design model of the autonomous air conditioning system use the input fuzzy variables temperature = 22 $^\circ$C and humidity = 30% this value of temperature lies in the second half of second region and this humidity value lies in the first half of the second region.

Where the given value 22 $^\circ$C of temperature maps with the MF cool and normal for which the normal is taken as F_1 and cool is taken as F_2 similarly the value 30 of humidity
maps with the value MF moist and just dry for which the moist is taken as F[3] and just dry is taken as F[4].

The fuzzifier result for this proposed algorithm are shown in the Table IV.

TABLE IV: FUZZIFIER RESULTS FOR AIR CONDITIONING MODEL

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>Value</th>
<th>Region selection</th>
<th>Fuzzy set Calculation</th>
</tr>
</thead>
</table>

The inference engine takes four inputs from fuzzifiers apply the min-AND operation and gives the four values i.e. R_1, R_2, R_3 and R_4 as shown in the figure below.

Inference engine takes four inputs from fuzzifiers apply the min-AND operation and gives the four values i.e. R_1, R_2, R_3 and R_4 as shown in the figure below.

For this proposed system out of these twenty-five rules only four rules are applied at a time for the given values input variables.

For temperature=22°C and humidity=30% the rules applied are listed in the Table VI.

TABLE VI: SELECTED RULES FOR INPUT VARIABLES

<table>
<thead>
<tr>
<th>Rule NO</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Fan speed</th>
<th>Fan spinning time</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Cool</td>
<td>Just dry</td>
<td>Stop</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>Cool</td>
<td>Moist</td>
<td>Stop</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>Normal</td>
<td>Just dry</td>
<td>Slow</td>
<td>Small</td>
</tr>
<tr>
<td>13</td>
<td>Normal</td>
<td>Moist</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Corresponding to these four rules, rule base provides four singleton values which are listed in the Table VII.

TABLE VII: SINGLETON VALUES FOR OUTPUTS

<table>
<thead>
<tr>
<th>Singleton value</th>
<th>Fan speed</th>
<th>Fan spinning time</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_2</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>S_3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Rule base block for the designed model of air conditioning system contains lookup table, it consists of rules which are design for modeled. Two comparators, two detectors and two decoders, these detectors and decoders tell about the region maps by the input variable and response of fuzzy set to these variable. Comparator takes information’s from detectors and decoders and gives the singleton values, as exposed in the Fig. 7.

Rule base block for the designed model of air conditioning system contains lookup table, it consists of rules which are design for modeled. Two comparators, two detectors and two decoders, these detectors and decoders tell about the region maps by the input variable and response of fuzzy set to these variable. Comparator takes information’s from detectors and decoders and gives the singleton values, as exposed in the Fig. 7.

Crisp values of output are obtained by defuzzification. There are many methods used for defuzzification e.g. (MOM) mean of maximum. (SOM) smallest of maximum (LOM) left of maximum etc.

The method use in this paper for defuzzification is(COA) center of average whose mathematical form is

$$\frac{\sum Si \times Ri}{\sum Ri}$$

where $i = 1, 2, 3, 4$.
This system takes eight inputs to each defuzzifier four from inference engine i.e. R₁, R₂, R₃, and R₄ and four from the rule base i.e. S₁, S₂, S₃, and S₄ and gives the crisp value of output fan speed and fan spinning time. MATLAB simulation result for this system are shown in the Fig. 8.

![Simulation results](image)

Table VIII below shows the output defuzzified values for fan speed and fan spinning time from MATLAB simulation and also the defuzzified values from manual calculation corresponding to the input variable temperature=22°C and humidity =30

<table>
<thead>
<tr>
<th>TABLE VIII: DEFUZZIFIED VALUES</th>
<th>Fan speed</th>
<th>Fan spinning time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATLAB simulation result</td>
<td>30.3</td>
<td>30.4</td>
</tr>
<tr>
<td>Manual calculated values</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

VI. RESULTS DISCUSSION

Fig. 8(a) shows that the temperature and fan speed are directly proportional to each other and fan speed is independent of humidity up to the value of 50 and then gradually increased with humidity

Fig. 8 (b) below shows that the temperature and fan spinning time are directly proportional to each other but humidity remains constant up to 50 and then increased with time

![Plot between humidity temperature and fan speed](image)

![Plot between temperature humidity and fan spinning time](image)

VII. CONCLUSION

This paper presents the fuzzy time control discrete event model of autonomous air conditioning system and shows the effectiveness of the approach. Nowadays, the trend is to make systems, which use less energy, gives maximum efficiency. The proposed design fulfills these conditions and provides the conservation of energy due to its time dependency that operates the system for a specific period of time and gives the approximately same defuzzified values for MATLAB simulation and manual calculation. The system itself provides the base to design the fuzzy time control discrete event systems in future.

REFERENCES

Syed Fazil Bin Farukh is received M.S. degree in the field of electronics engineering from faculty of Engineering and Technology, International Islamic University Islamabad. He is currently availing a research fellowship at The GC University, Lahore, Pakistan and completed his M.S thesis in the field of control systems: design, simulation and analysis in local and distributed environment. He contributed his services on various projects in the field of Advanced Electronics and Communication. His research interests include control systems design and industrial applications.

M. Saleem Khan is a director of computer science dept. at GC University Lahore, Pakistan. He completed his Ph.D. thesis in the field of control systems: design, simulation and analysis in local and distributed environment. He contributed his services on various projects in the field of Advanced Electronics and Communication. His Research interests include control systems design and industrial applications. He promoted a large team of Electronics researchers and organized this field in his country. Mr. Khan had also been served as a senior scientific officer in a classified defence research organization in his country.