Extended Approach of ANFIS in Cascade Control

Mahardhika Pratama, Samsul Rajab, and Er. Meng Joo

Abstract—this paper discusses extended approaches of Adaptive Network Based Fuzzy Inference System (ANFIS) using Self Tuning Regulator (STR) via Fuzzy logic to be implemented in cascade control. Plant used is Pressure RIG 38-714 which supports cascade configuration. The controlled variable in the outer loop is pressure, in the inner loop’s flow. The proposed method’s used to improve the performance of ANFIS which has been commonly implemented to accomplish control task. Comparison has been conducted between ANFIS using STR and without STR, from experiment could be concluded that controller ANFIS using STR acquired better performance than only used ANFIS. It’s derived from the transient response of those. For ANFIS using STR is obtained rise time and settling time are 9 ms and 12 ms respectively. In the other hand, ANFIS without STR resulted 21 ms and 29 ms for rise time and settling time respectively.

Index Terms—ANFIS, Cascade Control, Self Tuning Regulator.

I. INTRODUCTION

Cascade control’s one of example in the complex architecture of control system. Indeed, it has two control loops, one’s used to control main variable (outer loop) and another’s used to reject the disturbance (inner loop). An advantage of this structure’s if there’s a disturbance on the inner loop might be immediately detected and undertaken self correcting, because process on the inner loop has to be much faster than on the outer loop, thereby such structure like that’s also able to prevent a stability of the plant simultaneously. Although has an advantage, cascade control’s relatively expensive due to utilizing more sensor. Because, there are two control variable to solve one main control variable.

Fuzzy logic invented by Zadeh has been widely used in the many applications. In the area of control engineering, fuzzy logic controller with many varieties and structures have been practically developed in the many areas such as: control, forecasting, identification, and etc. The strongest thing of fuzzy logic’s can adopt intuition of human feeling mapped in the membership function of fuzzy logic. Such thing like that might replace on-off logic which only understands 2 values as ON and OFF.

However, the weakness of fuzzy logic’s it does not have a fix pattern to obtain the shape of membership function. In the other hand, it’s also difficult to establish the rules of fuzzy logic controller. Because of the above problems, those could be concluded that fuzzy logic controller’s very dependable on the expert intuition.

A Neural Network (NN) technique’s cited a lot of attention in the recent years basically adopting the principle of human brain. Many researches are conducted in the application of neural network. It just need to give training data with certain algorithm to be learned by NN. The learning phase determines a weight of link that connects each node.

In spite of very powerful, NN also has weaknesses. A NN is very dependent on the numbers of weights in the each links. It’s time consuming to choose a suitable structure of NN corresponding to how many neurons and hidden layers to be utilized. A success of designing NN is determined not only in the performance of NN but also computational time needed by NN to accomplish a task, more neurons and hidden layers are more time to be taken in the learning phase.

Due to the above backgrounds, the basic idea to unite the NN and fuzzy logic controller is emerged by R.J.Jang to create ANFIS. Structure of Fuzzy logic is combined with learning principle of neural network, thus Problems can be eliminated including the problems in the obtaining the shape of membership function and suitable rule fuzzy logic controller. In the other hand, the problem to find structure of NN can be overcome because of fix structure of fuzzy logic structure.

The integrated neural-fuzzy system combines advantages of both NN and FIS. Application of both technologies are categorized into following four case [1]:

1) NN is used to automate the task of designing and fine tuning the membership functions of fuzzy systems.
2) Both fuzzy inference and neural network learning capabilities acting separately.
3) NN customizes the standard system according to each user preferences and individual needs.

Applications of ANFIS controller have been done in the several purposes such as: In [2], the author using ANFIS and self tuning to improve pitch and yaw of twin rotor. In [3] genetic algorithm (GA) was created based ANFIS, [4] ANFIS was used with PSO to control velocity control of DC motor, ANFIS as controller unmanned air vehicle was proposed in [5], [6] they developed ANFIS as stability controller of inverted pendulum, [7] ANFIS was compared with radial basis function neuro fuzzy with hybrid genetic and pattern search algorithm. Because of the significant contribution of ANFIS controller and cascade control, therefore it’s important to enhance in the implementation of ANFIS.

This paper proposes controller ANFIS which combine with STR to be implemented in cascade control. The structure of the ANFIS is formed using five-layer fuzzy neural network. At the cascade structure ANFIS is employed.
in addition STR is used to complete the strength of ANFIS. The proposed method is used to act as primary controller in the outer loop, in the inner loop, pure PI controller is used. To know the abstraction of Plant model Auto Regressive with Exogenous input (ARX) is used via Pseudo Random Binary Sequence as input.

This paper’s organized as follows: Section I gives the description and background of the research. Section II describes the basic theory of ANFIS, self tuning regulator, and cascade control. Plant modeling with dynamic identification via ARX is described in detail in Section III; in addition the experimental set up is also included. Section IV explains experimental result and discussion. Finally, some conclusions are given in the rest of this paper.

II. LITERATURE REVIEW

In this section is discussed the concepts of the ANFIS controller, self tuning regulator, and cascade control.

A. Adaptive Network Based Fuzzy Inference System (ANFIS)

As aforementioned, ANFIS is created from integration of fuzzy logic and neural network. This paper assumes that ANFIS under consideration has two inputs \(x_1\) and \(x_2\) and one output \(f\). The structure of ANFIS is shown in Fig. 1. From if-then rules of Takagi and Sugeno’s type can be defined as follows:

\[
\text{Rule 1: If } x_1 \text{ is } A_1 \text{ and } x_2 \text{ is } B_1, \text{ then } f_1 = p_1 x_1 + q_1 x_2 + r_1
\]

\[
\text{Rule 2: If } x_1 \text{ is } A_2 \text{ and } x_2 \text{ is } B_2, \text{ then } f_1 = p_2 x_1 + q_2 x_2 + r_2
\]

In which \(A_1\) and \(B_1\) are the membership functions of ANFIS (antecedent). \(p_1\), \(q_1\), \(r_1\) are the consequent parameters. The node functions each layer describes as follows:

Layer 1: This layer’s input layer that classify input of ANFIS controller into the fuzzy sets.

\[
O^i_1 = \mu_{A_i} (x_1), \quad i = 1, 2
\]

\[
O^i_1 = \mu_{B_i} (x_2), \quad i = 3, 4
\]

where \(x\) is the input to node \(i\), and \(A_i\) is the linguistic label (fast, slow, etc).

Layer 2: After they are laid in the MF of ANFIS, AND operator is used before to be an input of next layer. Every node in this layer is a circle node with labeled \(\Pi\). It’s means that every incoming signal should multiplies and sends the product out.

\[
O^i_2 = w_i = \mu_{A_i} (x_1) \mu_{B_i} (x_2)
\]

Layer 3: Every node in this layer a circle node labeled \(N\). Input on this layer have to be normalized with calculating.

\[
O^i_3 = \bar{w}_i = \frac{w_i}{w_1 + w_2}, \quad i = 1, 2
\]

Layer 4: The input from previous layer’s multiplied with output parameters determined from learning process. Node function in this layer as follows:

\[
O^i_4 = \bar{w}_i z_i = \bar{w}_i (p_i x_1 + q_i x_2 + r_i) \quad i = 1, 2
\]

![Fig.1. ANFIS structure with 2 inputs and 1 output the ratio of each input derived by total weights.](image)

The proposed method is used to act as primary controller in the outer loop, in the inner loop, pure PI controller is used. To know the abstraction of Plant model Auto Regressive with Exogenous input (ARX) is used via Pseudo Random Binary Sequence as input.

This paper’s organized as follows: Section I gives the description and background of the research. Section II describes the basic theory of ANFIS, self tuning regulator, and cascade control. Plant modeling with dynamic identification via ARX is described in detail in Section III; in addition the experimental set up is also included. Section IV explains experimental result and discussion. Finally, some conclusions are given in the rest of this paper.

Layer 5: Single node in this layer is a circle node labeled \(\Sigma\) that means for computes overall output as the summation of all incoming signals.

\[
O^i_5 = \sum_{i=1}^{4} \bar{w}_i z_i, \quad i = 1, 2
\]

From Fig.1 overall output can be expressed as linear combinations of the consequent parameters. The output \(f\) in Fig. 1 can be rewritten as

\[
f = \frac{w_1 f_1 + w_2 f_2}{w_1 + w_2}
\]

In this paper, the membership functions of ANFIS have two parameter inputs error (E) and change of error (DE) and a single output \(u\). The inputs and output E, DE, and \(u\) are intuitively partitioned into seven fuzzy linguistic spaces {NB, NM, NS, Z, PS, PM, PB} which tabulated in Table I. Fig. 2 and 3 exhibits the form membership function utilized Gaussian type.

B. Self Tuning Regulator

Basically, Self Tuning Regulator and ANFIS are invoked to accomplish different task, ANFIS is main controller, and STR is controller to improve the performance of ANFIS and keep plant response always within the stability region. Self tuning regulator used in this paper’s established from Fuzzy inference system which is intuitively determined from system response. Similar with ANFIS model, STR has two inputs error (E) and change of error (DE) and a single output \(u\). Rule base of self tuning regulator from plant output can be derived on Fig. 4. For STR the form membership function of E and DE employ triangular type which exhibits on Fig 5 and 6.

First of all, Define that the term sets of input/output variables have five membership functions, with terms of negative big (NB), negative small (NS), zero (Z), positive small (PS), and positive big (PB). The prototype of fuzzy control rules is tabulated in Table II. In point A if \(E\) is positive and \(DE\) is negative then \(u\) should be positive. In the point B, \(E\) is negative smaller than the point \(a\), and \(DE\) is positive, so it must be decreased to avoid excessive overshoot. In the point C, E is positive big and DE is negative big, in order to get steady state, \(u\) has to be increased. In the
point d, E is positive small and DE is negative small to approach steady state value u should be decreased.

TABLE I: RULE BASE OF CONTROLLER ANFIS

<table>
<thead>
<tr>
<th>DE</th>
<th>NB</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>Z</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>NM</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>Z</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PM</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

Fig.2. Membership function of error (E) for ANFIS controller

Fig.3. Membership function of derror (DE) for ANFIS controller

It is reasonable because cascade control has inner loop for fastly compensating disturbance before it is influenced the main control variable.

Plant which used in this paper is pressure rig 38-714. it is able to be configured to represent cascade control architecture in which inner loop and outer loop variables are flow, and pressure. Fig. 7 exhibits a P&ID diagram of pressure rig 38-714.

C. **Cascade Control (Pressure Rig 38-714)**

Cascade control is one of complex control architecture commonly used in the real word to have better response than single loop architecture. Cascade structure gets many advantages than the conventional structure, especially for rejecting disturbance in the systems.

TABLE II: RULE BASE OF STR

<table>
<thead>
<tr>
<th>DE</th>
<th>NB</th>
<th>NB</th>
<th>Z</th>
<th>PS</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>NS</td>
<td>PB</td>
<td>PB</td>
<td>PS</td>
<td>Z</td>
<td>NS</td>
</tr>
<tr>
<td>Z</td>
<td>PB</td>
<td>PS</td>
<td>Z</td>
<td>NS</td>
<td>NB</td>
</tr>
<tr>
<td>PS</td>
<td>PS</td>
<td>Z</td>
<td>NS</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>PB</td>
<td>Z</td>
<td>NS</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
</tbody>
</table>

Fig.4. Rule justification by using system step response

Fig.5. Membership function of error (E) for STR

Fig.6. Membership function of derror (DE) for STR

Fig.7. P&ID diagram of pressure rig 38-714

The way to operation pressure rig 38-714 with given set point from PC and converted to be voltage (0-5 volt). Voltage’s changed to be current (4-20 ma), in order to be input of I/P converter. A I/P converter undertakes conversion current to be pressure (3-15 psi). Pressure’s detected by pressure sensor via pressure transmitter. Sensor’s obtained by differential pressure sensor through flow transmitter. V4, V5, V6, V2, V3, V1 are disturbance of the system which’s represented as open or close manual valve.

III. **SYSTEM DESIGN**

At this section, the description of pressure rig 38-714’s exhausted, modeling of pressure rig 38-714 using ARX’s and the function of STR are also clearly discussed.

Identification of pressure rig 38-714 is achieved by applying random input signal through pseudo random binary sequence method. This method’s is termed dynamic identification. The first sets pressure rig 38-714 in nominal
load in which V4, V5 are opened, and V6 is closed. Set point given between 2-3 volt and bits signal used for pseudo random binary sequence (PRBS) are 1-1-0-0-0-1-0-1-0. 1 represent 3 volt and 0 represent 2 volt. Because of inner loop’s much faster than inner loop therefore plant may be identified as decouple, it means that outputs are estimated independently. Identification’s conducted with open loop configuration. Fig. 8, 9, and 10 show PRBS signal, pressure open loop response, and flow open loop response respectively.

After that, ARX model might be employed to estimate each control variable. Pressure and flow are modeled as one and two ordered system respectively, in which norm error of those are seek the smallest norm error. Equation 8, and 9 are mathematical description of pressure and flow.

\[G(s) = \frac{0.8}{180s + 1} \]

\[G(s) = \frac{12s + 1}{s^2 + 63s + 8.4} \]

The complete system in this paper is added with STR for improving the performance of system. Self tuning regulator can be categorized as adaptive control system. The basic principle of adaptive control system is able to change if the condition is changed dynamically.

IV. SIMULATION AND DISCUSSION

This paper compares ANFIS using STR and only ANFIS. The control scheme of the ANFIS with STR and ANFIS are shown in Fig.11 and 12.

![Fig.11. Architecture system with controller ANFIS](image)

![Fig.12. Architecture system with controller ANFIS + STR](image)

The value of \(K_e \) and \(K_{de} \) are determined 0.5 to satisfy the requirement. Comparison between both algorithm are shown in Fig. 13.

In Table III exhibits the transient responses algorithm ANFIS using STR and ANFIS. Both of algorithms are ejected within the same input step (the value of step input is 2) while 100 ms. It can be seen that ANFIS using STR performs better response than another, it is verified with faster to reach steady state criteria. Compared from transient responses, ANFIS has the value of time rise (tr) 21 ms. In ANFIS using STR is acquired value of 9 ms for the time rise. Furthermore, for the value of settling time ANFIS using STR gives 12 ms less than the settling time of ANFIS (29 ms). It is fair to be said that extended approach of ANFIS using STR is able to improve Pure ANFIS.

![Fig.13. Output response of ANFIS and ANFIS + STR](image)

<table>
<thead>
<tr>
<th>Algorithm Mode</th>
<th>tr(10%-90%) (ms)</th>
<th>ts(5%) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>ANFIS with STR</td>
<td>12</td>
<td>29</td>
</tr>
</tbody>
</table>

V. CONCLUSION

Applying extended ANFIS to solve control task gives satisfied results in performance than just using pure ANFIS.
From experiment, shows that ANFIS using STR can much improve the performance a system, it might be checked from faster increasing of rise time and settling time within transient response. The ANFIS extension of this paper is actually simple, nevertheless it’s able to give improvement of the ANFIS. This technique’s actually ready to be implemented to solve more complicated control task such as: Networked Control System, Nonlinear Control, etc. this paper actually need to be elaborated which will be given in the future work.

REFERENCES

Mahardhika Pratama was born in Surabaya, Indonesia, 1988. He received B.Eng. from Electrical Engineering Department, Sepuluh Nopember Institute of Technology with First Class Honor. He is currently master student in the Nanyang Technological University, Singapore. In his relatively young ages, he has published 15 papers in the international conferences and journals. Now, he is also working as attachment in Singapore Institute of Manufacturing Technology (SIMTech) within the funded project of A-Star science and engineering research agency Singapore-Poland. His researches interest are in the area of Fuzzy Neural Network (FNN), type 2 fuzzy logic, intelligent control, modeling and identification, nonlinear control, and complex system. Dhika is also member of IEEE computational intelligent society, and control system society, Indonesian Soft Computing Society, International Association of Computer Science and Engineering Technology (IACSIT).

Samuel Rajab was born in Wapunto, Indonesia in 1987. He received the B.S. degree from Department of electrical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia, in 2009. He has been a assistant lecture in the Analog Control System Laboratory at the Sepuluh Nopember Institute of Technology. In 2010 He joint with research group in Control System Laboratory. His research interests in the area of intelligent control with it’s application and nonlinear control.