Embedded Controlled Three Level Inverter Based Dynamic Voltage Restorer (DVR)

S. Leela and S.S. Dash

Abstract—This paper deals with simulation and implementation of three level inverter based Dynamic Voltage Restorer (DVR). The control of DVR that injects a voltage in series with a distribution feeder is presented. DVR is a power electronic controller that can protect sensitive loads from disturbances in supply system. DVR can regulate the voltage at the load. Laboratory model is developed and the experimental results are compared with simulation studies.

Index Terms—Dynamic Voltage Restorer (DVR), Matlab simulink, Series Compensation, Three level inverter.

I. INTRODUCTION

A power electronic converter based series compensator that can protect critical loads from all supply side disturbances other than outages is called a dynamic voltage restorer. The restorer is capable of generating or absorbing independently controllable real and reactive power at its AC output terminal. This device employs solid state power electronic switches in a pulse width modulated (PWM) inverter structure. It injects a set of three phase AC output voltages in series and synchronism with the distribution feeder voltages. The amplitude and phase angle of the injected voltages are variable there by allowing control of the real and reactive power exchange between the device and the distribution system. The DC input terminal of the restorer is connected to an energy source or an energy storage device of appropriate capacity. The reactive power exchanged between the restorer and the distribution system is internally generated by the restorer without AC passive reactive components. The real power exchanged at the restorer output AC terminals is provided by the restorer input DC terminal from an external energy source or energy storage system.

In August 1996, Westinghouse Electric Corporation installed world’s first dynamic voltage restorer in Duke Power Company’s 12.47 kV substation in Anderson, South Carolina. This was installed to provide protection to an automated rug manufacturing plant. Prior to this connection, the restorer was first installed at the Waltz Mill test facility near Pittsburgh for the full power tests. The test results are discussed in [1]. The next commissioning of the restorer was done at Westinghouse in February 1997 in Powercor’s 22 kV distribution system at Stanhope, Victoria, Australia to protect a diary milk processing plant. The saving that results from the installation of this installation is estimated at over $100,000 per year [2]. In the next phase of development, Westinghouse (now taken over by Siemens) installed world’s first platform mounted dynamic voltage restorer to protect Northern Lights Community College and several other smaller loads in Dawson Creek, British Columbia, Canada [3].

This paper extends the concept of dynamic voltage restorer further to tightly regulate the load voltage. It can also perform the primary functions of the restorer, i.e., to protect the load from temporary voltage interruption, sag/swell etc. This device is called a dynamic voltage regulator (DVR). For the control operation of DVR we stipulate that real power supplied by the device in steady state is zero. Based on this stipulation, the references of the voltages that are to be injected in series are generated. This requires online extraction of the fundamental positive sequence based on the sampled values. Once the reference voltage s are obtained, they are tracked by the VSIs realizing the DVR.

The actual implementation of the DVR using inverters raises additional issues of switch frequency injection. To eliminate these, two different filter structures are discussed here. The inclusion of the filters further complicates the problem of voltage tracking. To facilitate proper voltage tracking a switching band control scheme is used here. The proposed DVR is validated through digital computer simulation studies. New approach to load balancing and power factor correction is given by Ghosh[4]. Power inverter operations for series compensation is given by [5]. Transient analysis of alternator is given by [6].

The above literature does not deal with the embedded implementation of DVR system using matlab simulink. In this work, an attempt is made to implement the DVR system using an embedded controller. Three level inverter is proposed to reduce the harmonic distortion.

II. DVR CHARACTERISTICS

In this section we shall present the fundamental, positive-sequence, steady state analysis of a DVR connected power system. The voltage regulation scheme is shown in Fig. 1. This consists the following:

- DVR: represented by voltage sources \(V_{fa}, V_{fb} \) and \(V_{fc} \)
- Supply voltage: represented by sources \(V_{sa}, V_{sb} \) and \(V_{sc} \)

The DVR is connected between a terminal bus on the left and a load bus on the right. The voltage sources are

Manuscript received November 21, 2009.

S. Leela is Research Scholar in the Department of Electrical and Electronics Engineering, Bharath University, Chennai, India. (e-mail: sleela13@yahoo.in)

Dr. S.S. Dash is with SRM University, Chennai, India. He is now Head of the Department in the Department of Electrical and Electronics Engineering, SRM University, Chennai, India. (e-mail: munu_dash_2K@yahoo.com)
connected to the DVR terminals by a feeder with an impedance of \(R + jX \). We shall assume that the loads are balanced and the load impedance is given by \(Z_l = R_l + jX_l \). It is to be noted that the phase angle \(\Phi \) between the load terminal \(V_l \) and the line current \(i \) depends on the load impedance and is independent of the line impedance or the DVR voltage.

![Fig. 1. Schematic diagram of a dynamic voltage restorer connected to a power system.](image)

The objective of the discussion presented below is to regulate the magnitude of the load voltage equal to that of the source voltage through DVR voltage injection. Further we stipulate the following condition on the DVR:

- The DVR does not supply any real power in the steady state. This implies that the phase angle difference between DVR voltage phasor and line current phasor must be \(\frac{\pi}{2} \) in the steady state.

Let us assume that the load current lags the load voltage. To draw a phasor diagram of the steady state operation, we assume that the load voltage is fixed at \(V \) per unit and the source voltage is allowed to vary. Since the primary target is to make the magnitudes of \(V_l \) and \(V_s \) equal, the locus of desirable \(V_s \) is the arc NB as shown in Fig. 2.

III. SIMULATION RESULTS

Digital simulation is done using the blocks of Matlab simulink and the results are presented here. Three level inverter system is shown in Fig. 3a. Selective harmonic elimination is implemented by using phase shifting method. The output of the inverter without filter is shown in Fig. 3b. The output with filter is shown in Fig. 3c. DVR using multilevel inverter is shown in Fig. 4a. Scopes are connected to measure the inverter voltage and load voltage. The output of the inverter is injected into line through a transformer. At \(t=0.2s \), the additional load is switched on. The voltage across load-1 decreases as shown in Fig. 4b. DVR injects the voltage at \(t=0.4s \). The voltage across the load-1 and voltage across load-2 will resume to the normal value. FFT analysis for the output voltage is shown in Fig. 4c. The THD value is 27.3%.

![Fig. 3a. Three Level Inverter.](image)

![Fig. 3b. Output Of Three Level Inverter Without Filter.](image)

![Fig. 3c. Output Of Three Level Inverter With Filter.](image)

![Fig. 4a. DVR Without LC Filter.](image)
Fig. 4b. Injected Voltage, Voltage Across Load-1, Voltage Across Load-2.

Fig. 4c. Spectrum Of Output Voltage.

DVR system with LC filter is shown in Fig. 5a. Injected voltage, voltage across load-1 and voltage across load-2 are shown in Fig. 5b. The FFT analysis for the output voltage is shown in Fig. 5c. THD reduces to 0.8%. Thus the harmonics are reduced from 27.3% to 0.8% by using phase shifting method.

Fig. 5a. DVR With LC Filter.

IV. EXPERIMENTAL RESULTS

Laboratory model of DVR system is fabricated and tested in the laboratory. The driving pulses required by the inverter are produced by using Atmel microcontroller. These pulses are amplified using driver amplifier. The hardware layout is shown in Fig. 6a. AC input voltage is shown in Fig. 6b. Driving pulses applied to the inverter are shown in Fig. 6c. The output of DVR system without filter is shown in Fig. 6d. The output of DVR system with filter is shown in Fig. 6e. It can be seen that the output is nearly sinusoidal.

Fig. 6a. Hardware Implementation.

Fig. 6b. AC Input Voltage.
Fig. 6c. Driving Pulses Of MOSFETS.

Fig. 6d. Output Of DVR Without Filter.

Fig. 6e. Output Of DVR With LC Filter.

V. CONCLUSION

This paper presents simulation and implementation results of DVR using cascaded three level inverter. The pulses given to the inverter-II are shifted by 36\(^\circ\) with respect to the pulses given to the inverter-I to reduce the harmonics. This reduces the harmonics to 0.8\%. Thus this paper demonstrates the capability of DVR to improve the voltage quality. Two different DVR structures are studied and the corresponding results are presented. It is better to use a filter in the output of inverter to reduce the heating.

The simulation is based on the assumption of balanced load and single phase circuit model. The experimental results are similar to the simulation results.

REFERENCES

S. Leela received her B.E. degree in electrical and electronics engineering from Bharathidasan University, Trichy, India in the year 1990 and she received her M.E. degree in power electronics and industrial drives from Sathyabama Institute of Science and Technology, Chennai, India in the year 2006. She is a research scholar in the department of Electrical and Electronics Engineering of Bharath University, Chennai, India. Her interests are in power quality improvement.

Dr. S.S. Dash received his M.E. degree in power systems from U.C.E, Orissa, India in the year 1996 and he received his Ph.D. degree in electrical engineering from Anna University, Chennai, India in the year 2006. He holds more than ten years of research and teaching experience. Currently, he is working as Professor at SRM University, Chennai, India. He has published more than 20 papers in Journal and Conferences. His research interests include power systems, power electronics and power quality improvement.