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Abstract— In this paper multiway circuit partitioning of 

circuits using Genetic Algorithms has been attempted. Due to 
the random search, inherent parallelism, and robustness of 
genetic algorithms, the solution of a circuit partitioning 
problem is global optimum. Results obtained show the 
versatility of the proposed method in solving NP hard problems 
like circuit partitioning. Results obtained show an improvement 
over the results of UCLA Branch and Bound partitioner [27]. 
Information of the circuit has been given in accordance with 
circuit netlist files used in ISPD’98 circuit benchmark suite. 
 

Index Terms— Partitioning, Genetic algorithm, NP Hard, 
Net list, Crossover, mutation.  
 

I. INTRODUCTION 
  With the advancements in VLSI technology the chip 

complexity is increasing, leading to more and more 
integration, increased design sizes, and huge chip estate 
being occupied by interconnects, which leads to increased 
delay. Improved physical design tools, are necessary to 
handle these issues. Circuit partitioning is an important step 
in VLSI physical design and involves the division of a circuit 
into smaller parts for ease of design and layout. The main 
objectives of circuit partitioning include minimization of 
number of interconnections between the partitions, 
minimization of delay due to interconnections between 
partitions, and ratio-cut minimization. 

Efficient, easily applied algorithms for optimal clustering 
to minimize delay in digital networks were developed by 
Lawler et al. [1]. Kernighan and Lin [2] proposed a heuristic 
for two-way partitioning which was the first iterative 
algorithm based on swapping of vertices. 

A more practical model based on hyper graphs was 
proposed, but was inefficient due to time complexity [3]. A 
new data structure bucket list for cell gains and proposed cell 
move with better time complexity was proposed [4]. 
Krishnamurthy [5] modified [4] to introduce the concept of 
look ahead to choose the cell move. 

Various multiway partitioning algorithms were proposed 
by modifying [4] [5] and developing appropriate data 
structures [6], top down clustering and iterative primal-dual 
approach [7], dual intersection graph representation and ratio 
cut metric [8]. Areibi and Vannelli [9] described the 
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application of Tabu search heuristic to circuit partitioning 
problem. 

Mazumdar [10] proposed a GA based evolutionary 
approach for circuit partitioning giving a significant 
improvement in result quality. Comparative evaluation of 
genetic algorithm and simulated annealing was done with 
genetic algorithm giving better results [11]. A new 
hyper-graph partitioning algorithm hmetis was proposed, 
giving fast and better cutsize [12]. 

A genetic algorithm for partitioning of multi-FPGA system 
which uses problem specific encoding and fuzzy technique 
was developed [13]. Abeibi [14] discussed the 
implementation issues for applying memetic algorithm for 
VLSI physical design. A multi objective , hMetis partitioning 
for simultaneous cutsize and circuit delay minimization was 
proposed [15]. Various algorithms using different 
optimization techniques were developed for SoC and 
hardware software partitioning [16] [17]. Kolar et al. [18] 
developed a two way partitioning of a circuit, represented as 
a graph, using simulated annealing procedure, giving good 
results. Ghafari et al. [19] focused on minimizing the 
dynamic and sub threshold leakage power in CMOS circuits. 
Wang et al. [20] have given an algorithm for application 
partitioning on programmable platforms using Ant Colony 
optimization. 

The different objectives [21] that may be satisfied by 
partitioning are: 
1) The minimization of the number of cuts: The number of 

interconnections among partitions, have to be minimized. 
Reducing the interconnections not only reduces the 
delay but also reduces the interface between the 
partitions making it easier for independent design and 
fabrication. It is also called the mincut problem. 

2) Minimization of delay due to partitioning: The 
partitioning of a circuit might cause a critical path to go 
in between partitions a number of times. As the delay 
between partitions is significantly larger than the delay 
within the partition, it is an important consideration in 
circuit partitioning. Important considerations for 
partitioning constraints [22] include.  

3) The limit on number of terminals is decided by the 
maximum number of terminals available on PCB 
connector or the pin count or the number of terminals of 
a sub circuit. 

4) Area of each partition is used as a constraint to reduce 
the fabrication cost with minimum area or as a balance 
constraint so that partitions are of almost equal size. 

5) Number of partitions appears as a constraint as more 
number of partitions may ease the design but increase the 
cost of fabrication and number of interconnections 
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between partitions. 
Various researchers have achieved varying levels of 

success using various optimization techniques. The current 
work attempts to use the simple genetic algorithm for 
multiway VLSI circuit partitioning. 

The genetic algorithm has been used to minimize the 
interconnections, i.e. the mincut problem with a balance 
constraint. The coding has been done using MATLAB 7.0. 

The proposed method gives excellent results for the 
partitioning problem, which brings out the versatility of 
genetic algorithms for solving such problems. 

II. MATHEMATICAL MODEL/PROBLEM FORMULATION  
Problem of circuit partitioning is non polynomial hard and 

cannot be effectively solved by deterministic algorithms. 
Genetic algorithm being an evolutionary computational 
model, is stochastic in nature and can be effectively used for 
circuit partitioning. In this problem, the partitioning has been 
viewed as the task of clustering circuit elements in groups so 
that the objective function is optimized with respect to 
specified design constraints. Though a number of variants of 
original GA exist, simple GA with roulette wheel selection 
has been used. The objective function captures the 
interconnection information and partitioning solution is 
optimized with respect to interconnections between the 
partitions with the constraint of forming balanced partitions. 

The mathematical representation of the objective function 
is given as  

Minimize the cost function 
C = ∑Cij 

Where i, j are vertices of an edge 
Uk

n=1     Vn = V 
C = cost of cut 
Ci, = cost of an edge 
k = number of partitions 
Vi = Disjoint subsets of the net use 
With the constraint 
V1 = V2 = Vn 
The applicability of the genetic algorithms has been 

illustrated by testing it on standard circuits based on ISPD’98 
Benchmark suite. Keeping in mind its highly stochastic 
nature, performance of GA has been analyzed with respect to 
parameters: 
1) Number of crossover points. 
2) Probability of mutation. 
3) Number of GA iterations. 

III. SOLUTION METHODOLOGY  
Genetic Algorithms [23] are evolutionary computational 

models based on Charles Darwin’s theory of natural 
evolution based on the concept of the survival of the fittest. 
Darwin observed that, as variations are introduced into a 
population with each new generation, the less-fit individuals 
tend to die off in the competition for food, and this survival of 
fittest principle leads to improvements in species. The 
concept of natural selection was used to explain how species 
have been able to adapt to changing environments and how, 
consequently, species that are very similar in adaptivity may 
have evolved. 

All genetic algorithms work on a population or a collection 
of several alternative solutions to the given problem. Each 
individual in the population is called a string or chromosome, 
in analogy to chromosomes in natural systems. The 
population size determines the amount of information stored 
by the GA. The GA population is evolved over a number of 
generations. All information required for the creation of 
appearance and behavioral features of a living organism is 
contained in its chromosomes.  

GAs are two basic processes from evolution: inheritance, 
or the passing of features from  one generation to the next, 
and competition, or survival of the fittest, which results in 
weeding out the bad features from individuals in the 
population. 

The objective of the GA is then to find an optimal solution 
to a problem .Since GA’s are heuristic procedures, modeled 
as function optimizers, they are not guaranteed to find the 
optimum, but are able to find very good solutions for a wide 
range of problems [24]. 

The proposed algorithm follows the following steps: 
Netlist: First step is to input the circuit to be partitioned. 

Circuit information is accepted in the form of circuit net list, 
in accordance with ISPD’98 benchmark suite. Netlist is 
commonly used in VLSI design to represent the circuit and 
can be considered as a hypergraph with vertices 
corresponding to cells (modules/ components/gates) and 
edges corresponding to signal nets [25]. Netlist processing is 
done so as to convert the circuit netlist in the form of 
chromosome. I/O pads are ignored in the netlist so that the 
partitioning process is reduced to partitioning of all 
components without any I/O constraints.  

BFS Algorithm: The information of interconnection 
between the components in the netlist is converted in form of 
adjacency matrix. This Adjacency matrix information is then 
used to traverse the circuit in BFS algorithm so that the 
connected components remain clustered together as far as 
possible. 

Initial population: Once the BFS order of components is 
obtained it is processed to form the initial solution for GA by 
converting it into 32-bit chromosome. The 32-bit 
chromosome contains integer values, with each integer value 
corresponding to each element of chromosome encoded to 
represent the partition number assigned and number of 
elements clustered to form single chromosome element. 

In the figure 3.1, Value of jth cell of chromosome is  n1n2, 
where, n1 indicates the partition number assigned and n2 
indicates the number of components clustered.  

 
1 2 3 4 . . . . 32 

 
 

 
 n1n2

 
Figure 3.1.  32-bit Chromosome 

Though other sorting data structure algorithm can be used 
such as depth first search algorithm, spanning tree algorithm 
etc, breadth first search algorithm has been found to capture 
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circuit information more effectively [26]. Using the initial 
solution, random population is generated of the population 
size specified by the user.  For each individual of the 
population, cost is computed. Objective function captures the 
cost of number of interconnections cut between the 
partitions. 

Fitness Evaluation: Using the cost computed, each 
individual is evaluated for its fitness function. Based on 
Fitness values individuals are randomly selected using 
roulette wheel selection for crossover operation. 

Crossover: Each individual is considered for selection as 
parent for crossover, with probability of selection 
proportional to its fitness value. Flexibility is incorporated in 
crossover operation with the user specifying the value for 
multipoint crossover. Offsprings generated from crossover 
replace the lowest fit individuals of the population if their 
fitness value is higher else, no replacement is made in the 
original population. In this algorithm, new offsprings replace 
the equivalent number of worst solutions from previous 
population which helps in survival of the any better solutions 
over several generations. 

Mutation: After population replacement, mutation is 
performed on the bits randomly with small probability of 
mutation. Probability of mutation is very important, because 
the number of bits to be mutated depends on this probability. 
Mutation of bits is not similar to the traditional binary 
mutation operator, which is simple inversion of any random 
bits (depending on Probability of mutation), in the 
population.  

 Mutation changes the partition assigned to random 
number of components, where number of components 
depends on the probability of mutation. Even the partition 
assigned is generated randomly. Generally low values of 
probability of mutation are preferred so that population is not 
changed drastically which is critical. The population with 
mutated bits is then evaluated for fitness and again whole 
cycle of selection, crossover, replacement and mutation is 
followed and repeats for number of iterations of GA specified 
by the user. 

No stopping criteria is specified in the algorithm itself 
because one of the advantages of evolutionary approach to 
partitioning is availability of ready solution at any stage, 
which if not globally optimal at least guarantees a good 
solution. But if no improvement is seen in the fitness and 
mincut results for consecutive 100 runs on a small scale 
circuit, GA is terminated.  

The proposed algorithm is shown as flowchart in figure 
3.2. 

 

IV. RESULTS AND DISCUSSION 
The Proposed Algorithm is tested on two circuits to 

demonstrate the effect of variation various parameters in 
genetic algorithms on partitioning. 
1) Circuit-1is a 4 bit full adder Circuit.  
2) Circuit-2 is a Circuit for keyboard entry of 3-digit nos. in 

storage registers. 
The Results of partitioning with GA on circuit 1 is shown 

in table 1. Here, No. of partitions,  No. of Crossover points 
and No. of individuals are taken as  3, 1 and  10 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Netlist 

Breadth First Search 
order of components 

Initial Population 
Generation 

Fitness evaluation of the 
individuals in the population 

Select parents with highest fitness for
crossover via Roulette wheel selection 

Crossover 

Mutation of the population 
with probability Pm 

Fitness Evaluation of the new 
generated population 

 
Figure 3.2 Flowchart of the Proposed Algorithm 

 
Table 4.1 Results of partitioning with GA on circuit-1 

(Np=10) 
No. of 

iterations 
Mincut Average 

Cut 
Max 

Fitness 

50 25 32 0.0388 

100 17 31 0.058 
150 30 38 0.033 
200 16 31 0.059 
250 23 33 0.042 
300 23 33 0.044 

 
As seen from the results in table 4.1 and table 4.4 

increasing the no. of iterations improves both mincut which is 
lowered as well as fitness which increases. But due to 
presence of local minimas and random nature of GA’s it is 
not always possible to have lower values of mincut with 
increased no. of iterations e.g. mincut lowers from 25 to 17 
and fitness of 0.058 is achieved if no of GA runs are 
increased from 50 to 100 runs. But if we further increase the 
runs to 150 mincut almost doubles to 30 and fitness drops to 
0.033.  this implies random nature of GA’s an d also presence 
of local minimas of 17 and 25. At 200 runs global minima of 
mincut  16 is achieved . This shows that results given by GA 
in a specific no. of runs may not always be the global solution 
but it guarantees to gives the good solution at any stage.         
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Fig 4.1 Mincut Plot for  circuit 1 (Np=10) 

 

 
Fig4.2 Fitness plot circuit 1 (Np=10) 

Table 4.2 Variation of mincut & fitness w.r.t. Pm for a 4-bit 
full adder Circuit Partitioning 

Probability of 
Mutation (Pm) 

Mincut Average 
cut 

Max 
fitness 

0.0 32 38.22 0.0303
0.01 26 31.28 0.037 
0.03 25 34.12 0.04 
0.06 25 30.96 0.038 
0.1 28 32.19 0.0344
0.2 24 35 0.04 
0.3 22 32 0.044 
0.4 21 33 0.046 
0.5 16 23 0.059 
0.7 23 33 0.042 

 
No. of individuals in Population: 10 
No of iterations: 150 
No. of partitions: 3 
Time of execution (min):28  
Though mutation operator helps improve mincut and 

average cut but probability of mutation should be kept low 
(table 4.2). But mutation gives optimized or considerably 
lower value of mincut at cost of increased number of GA runs, 
which increase time of execution. For fixed number of runs, 
comparatively higher degree of mutation 30%-50% shows 
improvement in mincut. Very high values of probability of 
mutation around 1 mincut increases thereby giving lower 
fitness but the average cut increases with increase in 
probability of mutation which suggests mutation probability 
should be high around 0.5 and degree of crossover should be 
low for optimized results. 

Table 4.3 Partitioning Results w.r.t. No. of individuals for 
circuit 1 

No. of 
individuals  

Min- Cut Average 
mincut 

Max 
Fitness 

10 16 38 0.059 
15 14 36 0.067 
20 17 31 0.058 
25 20 31 0.043 

 
No. of Iterations: 200 
No. of partitions: 3 
 
As shown in table 4.3, with increase in no. of individuals in 

the population results are seen to show an overall 
improvement but improvement depends on whether the new 
individuals included in the population are closer to 
individuals giving good solutions or bad ones. Since this is 
also a random process, the dependency of GA results on no of 
individuals again is stochastic. But due to crossover and 
mutation operations involved even bad individuals undergo a 
change to yield better results and hence there is an 
improvement expected with increase in no of individuals in 
the population 

Table 4.4 Partitioning Results w.r.t. No. of iterations on 
circuit 2 

No. of 
iterations 

Mincut Maximum 
fitness 

Avg Cut

100 32 0.0303 46.62 
150 30 0.0322 44.23 
200 30 0.0322 43.55 
300 27 0.035 43.12 

 
No. of Components in the circuit: 109 
No. of nets: 156 
No. of individuals in the Population: 10 
No. of crossover points: 1 No of partitions: 3 

As indicated by the results in table 4.5 the increase in 
number of crossover points does not necessarily increase the 
fitness, as fitness achieved besides crossover depends on 
points of crossover and mutation probability too. But in 
general with higher degree of crossover average mincut 
improves particularly for high mutation probability. 
Preferably mutation probability should be kept around 
20-30% for good results. 

Table 4.6 shows the results for partitioning w.r.t. the 
number of partitions. As the number of partitions is increased 
the mincut achieved is increased as expected because, if 
numbers of partitions required are more, optimization of 
interconnections between the partitions is required.  
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Fig 4.3 Mincut Plot for 100 iterations (circuit2) 

 
Fig 4.4 Fitness Plot for 100 iterations (Circuit 2) 

Iterations 

 
Iterations 

Fig 4.5 Mincut Plot for 200 iterations (circuit 2) 

 

 
Iterations 

Fig 4.6 Fitness plot for 200 iterations (Circuit2) 

 
Iterations 

Fig 4.7 Mincut Plot for 300 iterations (Circuit2) 

 
Iterations 

Fig 4.8 Fitness Plot for 300 iterations (Circuit2) 

Table 4.5 Results of partitioning using GA on circuit 1 w.r.t. 
No. of crossover points 

 
No. of 

crossover 
points 

Mincut Avg. 
Cut 

Time 
(min) 

Max 
Fitness

1 17 31 22 0.058 
2 19 28 23 0.05 
3 18 25 24 0.054 
3 19 19 27 0.05 

 
No. of Individuals: 10 
No of partitions: 3 
No. of Iterations: 100 

Table 4.6 Results for partitioning w.r.t. No. of partitions 
No. of 

partitions
No of 

iterations
Min 
cut 

Average 
Cut 

Max. 
Fitness 

2 200 18 38.30 0.0526 
3 200 30 43.55 0.032 
4 200 31 45.2 0.031 
5 200 27 46.69 0.0358 

 
No. of Components: 109 
No. of Individuals in population: 10 
No. of crossover points: 1 
 

Though exact number of partitions to be done depends on 
the area and I/O constraints of available chips into which 
partitions are to be mapped, the number of partitions to be 
done should not be very high as it will defeat the purpose of 
partitioning by consuming the resources inefficiently and  
resulting in higher circuit delays. It will give higher mincut as 
well as average mincut too will increase. But at the same time 
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care should be taken that partition number should be a 
balance between area and I/O constraints as well mincut 
between the partitions.  

The results obtained for circuit 1 and circuit 2 demonstrate 
the variation of various parameters and its effect. How ever, 
to compare the results with already available results, the 
method has been tried on circuit partitioning instances (net 
lists) available on MARCO GSRC VLSI CAD Bookshelf 
website. The circuit net lists are in the ISPD98 net list format 
(.Net D files). Results are compared with more obtained by 
UCLA Branch and Bound partitioner. 

 

Table 4.7 Mincut results for GA partitioner and UCLA 
Branch and Bound Partitioner. 

S. 
No. 

CIRCUIT 
Series 

Number 
of nodes 

No. of 
net D 
files 

Minimum 
Cut using 

GA 

Minimum Cut 
using UCLA 

Branch & 
Bound 

Partitioner 

1. SPP-N10.series 10 483 4.05 4.1 

2. SPP-N15.series 15 184 5.29 5.4 

3. SPP-N20.series 20 121 7.12 7.2 

4. SPP-N25.series 25 107 8.0 7.6 

5. SPP-N30.series 30 52 7.8 8 

6. SPP-N35.series 35 31 10.32 10.4 

7. SPP-N40.series 40 41 8.5 8.4 

8. SPP-N45.series 45 28 10.8 11.2 

9. SPP-N50.series 50 24 10.75 10.5 

10. SPP-N55.series 55 20 11.5 11.7 

11. SPP-N60.series 60 9 11.4 11.6 

12. SPP-N65.series 65 6 10.8 11 

 
Table 4.7 shows the comparison of average results 

obtained from the proposed GA partitioner and the UCLA 
Branch and Bound Partitioner [27]. The average results have 
been obtained on multiple number of partitioning instance 
groups in each size range. The partitioning instances have 
been generated by the top down partitioning based placement 
process employed by UCLA Capo placer [27]. The 
comparison of results shows that highly competitive results 
have been obtained through the GA process, which are either 
better or very near those obtained by the UCLA Branch and 
Bound Partitioner. Average time taken for simulation cannot 
be compared directly due to variation in hardware used. 

V. CONCLUSION 
The Genetic Algorithm applied to VLSI partitioning 

produces a significant improvement in result quality. In the 
GA, search is done from a population, not a single point. In 
conventional algorithms, a single point in the solution space 
is iteratively refined to obtain higher fitness values.  By 
maintaining a population of well adapted points probability 
of reaching false peaks is reduced. 

The results obtained show the random nature of GAs and 
the presence of local optima which need to be avoided. The 
global nature of GAs help in avoiding the above this problem. 
To obtain good solutions using GAs, the probability of 
mutation should be generally kept low. The increase in 
number of individuals may not always improve the results. 
The dependency of GA results on number of individuals is 
again stochastic. The increase in number of cross-over points 
does not necessarily increase the fitness, as the fitness 
achieved depends on cross-over as well as mutation 
probability.  

The comparison of results obtained through the proposed 
GA based partitioner with UCLA Branch and Bound 
Partitioner [27] shows an improvement in cut size over most 
net list instances which proves the suitability of the proposed 
algorithm. 

The main problem of a pure genetic-based partitioning 
algorithm is that its run time increases quickly as the problem 
size increases. In order to tackle the run-time complexity, a 
fast hybrid genetic algorithm that employs local optimization 
in every generation can be developed, and will help achieve a 
faster convergence without compromising the quality of the 
solutions. 
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